Nombre de la asignatura	Teoría, algoritmos y aplicaciones de gestión logística
Créditos	8
Objetivos de la asignatura	La organización logística es una de las claves que determinan la eficacia y la eficiencia de las organizaciones, sean estas comerciales, gubernamentales, o humanitarias.
	Los métodos de modelado matemático y las técnicas de investigación de operaciones pueden jugar un papel importante en mejorar la gestión de los sistemas logísticos de una
	organización o de un sector. Este curso presenta un conjunto de conceptos esenciales en la gestión logística moderna, y los vincula con distintas familias de modelos de optimización y algoritmos de resolución,
	presentando ejemplos de aplicación basados en situaciones realistas.
Metodología de enseñanza	La metodología de enseñanza combina las clases expositivas clásicas con la exigencia de lectura previa por parte de los estudiantes del material bibliográfico del curso. Asimismo, se
	incluye la realización de entregas de ejercicios por parte de los estudiantes con devolución de las correcciones por parte del equipo docente a lo largo del curso. Se estima 40 horas de clases teóricas-practicas, 40 hs de lectura
	y estudio del material, y 40 de laboratorios, en total 120 hs de dedicación.
Temario	 Introducción a la Gestión Logística Conceptos básicos Ejemplos y aplicaciones prácticas
	 Modelos de inventarios Modelos de tamaño económico de lote. Integración de inventario y precios
	 3. Cadenas de suministro 1. Modelos de competencia y colaboración 2. Planificación de cadena de suministro 3. Problemas de localización de facilidades.
	 4. Ruteo de vehículos 1. Problemas de ruteo con capacidades 5. Algoritmos logísticos en la práctica 1. Planificación de redes
D'I I'	2. Otros ejemplos El curso se basa en el libro: The Logic of Logistics: theory,
Bibliografía y referencias	algorithms and applications for Logistics Management, D. Simchi-Levi, X. Chen, J. Bramel, Springer, 2014 (third edition), ISBN 978-1-4614-9149-1, disponible en Timbó, dirección http://resolver.ebscohost.com.proxy.timbo.org.uy:443/openurl?sid=EBSCO %3aedb&genre=book&issn=&ISBN=9781461491484&volume=&issue=&date = 20140101&spage=241&pages=241-262&title=Logic+of+Logistics
	%3a+Theory%2c+Algorithms+&atitle=Process+Flexibility.&aulast=Simchi- Levi%2c+David&id=DOI%3a10.1007%2f978-1-4614-9149-1_13&site=ftf-live También se tendrá como referencia el libro: Operation rules: delivering customer value through flexible operations. D.
	Simchi-Levi. The MIT Press. 2013. ISBN 978-0-262-01474-8 (no disponible en Timbó).
	Ambos libros están también incluidos en el acervo de la biblioteca del Instituto de Computación.
Conocimientos previos exigidos y recomendados	Se requiere conocer las técnicas de modelado de problemas de optimización a través de programación matemática (lineal y lineal entera). Se recomienda experiencia en algún lenguaje de programación

Anexo:

1) Cronograma tentativo

- 1. Introducción a la Gestión Logística
 - 1. Conceptos básicos
 - 2. Ejemplos y aplicaciones prácticas

Semanas 1, 2 y 3.

- 2. Modelos de inventarios
 - 1. Modelos de tamaño económico de lote.
 - 2. Integración de inventario y precios

Semanas 4 y 5

- 3. Cadenas de suministro
 - 1. Modelos de competencia y colaboración
 - 2. Planificación de cadena de suministro
 - 3. Problemas de localización de facilidades.

Semanas 6, 7 y 8

- 4. Ruteo de vehículos
 - 1. Problemas de ruteo con capacidades

Semanas 9 y 10

- 5. Algoritmos logísticos en la práctica
 - 1. Planificación de redes
 - 2. Otros ejemplos

Semanas 11, 12 y 13 –

Semana 14 – prueba escrita.

Tiempo total estimado para asistencia a clases: 40 hs

Tiempo total estimado de lectura y estudio del material: 40 hs.

Tiempo total estimado para los ejercicios prácticos y laboratorios: 40 hs.

Total: 120 horas

2) Modalidad del curso y procedimiento de evaluación

El curso se dicta en modalidad presencial. Las tres primeras semanas se dictan 4 horas semanales de clase teórica, en las semanas 4 a 12 se dictan 2 horas semanales de clase teórica y una hora semanal de clases de consulta; en la semana 13, se dictará una hora adicional de consultas, totalizando 40 hs de clase directa. Se estima un dedicación de 40 hs. de lectura y estudio y 40 hs de elaboración de trabajos prácticos y laboratorios.

3) Materia

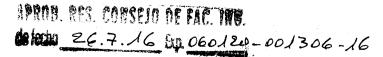
Ingeniería en Computación(plan 97)

Investigación Operativa

Licenciatura en Computación

Investigación Operativa

4) Previaturas


Ingeniería en Computación (plan 97)

Haber aprobado alguna de las siguientes asignaturas: Modelado y Optimización (cod. 1624); Optimización bajo incertidumbre (cod. 1626); Fundamentos de Programación Entera (cod. 1631). examen a curso.

Licenciatura en Computación

Haber aprobado alguna de las siguientes asignaturas: Modelado y Optimización (cod. 1624); Optimización bajo incertidumbre (cod. 1626); Fundamentos de Programación Entera (cod. 1631). examen a curso.

Esta asignatura no adhiere a resolución del consejo sobre condición de libre

